
DRAFT

Finding and Proving the Optimum:
Cooperative Stochastic and Deterministic Search

Jean-Marc Alliot1 and Nicolas Durand1,2 and David Gianazza1,2 and Jean-Baptiste Gotteland1,2

Abstract. In this article, we introduce a global cooperative ap-
proach between an Interval Branch and Bound Algorithm and an
Evolutionary Algorithm, that takes advantage of both methods to op-
timize a function for which an inclusion function can be expressed.
The Branch and Bound algorithm deletes whole blocks of the search
space whereas the Evolutionary Algorithm looks for the optimum in
the remaining space and sends to the IBBA the best evaluation found
in order to improve its Bound. The two algorithms run independently
and update common information through shared memory.

The cooperative algorithm prevents premature and local conver-
gence of the evolutionary algorithm, while speeding up the conver-
gence of the branch and bound algorithm. Moreover, the result found
is the proved global optimum.

In part 1, a short background is introduced. Part 2.1 describes the
basic Interval Branch and Bound Algorithm and part 2.2 the Evolu-
tionary Algorithm. Part 3 introduces the cooperative algorithm and
part 4 gives the results of the algorithms on benchmark functions.
The last part concludes and gives suggestions of avenues of further
research.

1 Background
Evolutionary Algorithms (EAs) appeared in the 60s with Holland [7]
and became popular in the late 80s with Goldberg [4]. They can be
very efficient to solve large dimension problems but are difficult to
handle (many parameters need to be chosen and are very often prob-
lem dependant). They often get trapped in local optima (premature
convergence).

Interval Branch and Bound Algorithms (IBBAs) were first intro-
duced by Hansen [5] in the 90s and combined interval analysis with
a Branch and Bound algorithm to reduce the size of the domain con-
taining the optimum. They are able to prove the optimality of the
solution but can rarely handle large dimension problems.

According to Alander [1] who studied the bibliography on genetic
algorithms from the 50s to 93, very few articles were related to in-
tervals and none of them dealt with IBBA-EA cooperation. In [9],
Jourdan, Basseur and Talbi proposed in 2009 a taxonomy of exact
methods and metaheuristics hybridizations. It appears that most of
the hybridization between metaheuristics and exact methods concern
discrete or combinatorial optimization.

IBBA and EA hybridizations were introduced by Sotiropou-
los [21] in 1997 and used by Zhang [25] in 2007. Both approaches are
integrative combinations, as described by Puchinger and Raidl [19].
In Sotropoulos’ article, the first step of the algorithm uses a branch
and bound to reduce the size of domain to a list of boxes (with a size

1 Institut de Recherche en Informatique de Toulouse, name.surname@irit.fr
2 Laboratoire “Mathématiques Appliqués et Informatique” de l’ENAC

smaller than ε). Then a genetic algorithm initializes its population in
every box and updates the upper bound of the minimum searched. A
shrinking box is used to improve the lower bound of the minimum
searched. A new population is generated after updating the bounds
and the corresponding box list. Zhang incorporates a genetic algo-
rithm in the Interval Branch and Bound algorithm to improve the
bounds and the remaining intervals list order.

Our approach is different as the IBBA and the EA cooperate but
run independently. They share and update common information that
helps both of them to accelerate their convergence.

2 Standard algorithms
2.1 Interval branch and bound
The Interval Branch and Bound Algorithm (IBBA) is basically a
Branch and Bound algorithm operating in a search space of intervals.
It requires to re-code the function using interval arithmetic [16].

Let us consider I = {[a, b]|a ≤ b, (a, b) ∈ R2} the set of compact
intervals in R, and I(R)n the set of n-dimensional interval vectors
(or boxes). The basic operations of interval arithmetic are defined as
follows:

[a, b] + [c, d] = [a+ c, b+ d] (1a)

[a, b]− [c, d] = [a− d, b− c] (1b)

[a, b] ∗ [c, d] = [min{ac, ad, bc, bd},max{ac, ad, bc, bd}] (1c)

[a, b]/[c, d] = [a, b].[1/d, 1/c] if 0 /∈ [c, d] (1d)

The usual real-valued functions (cos, sin, log, and so on) can also be
extended to interval arithmetic. There are now a large number of in-
terval arithmetic implementations with various bindings to different
languages, such as MPFI [20] for C, C++, or SUN interval arithmetic
implementation for Fortran 95 or C++ [13, 14].

In the rest of this document, we shall denote x = (x1, . . . , xn) the
real vectors, and X = (X1, . . . , Xn) the interval vectors (boxes).
An interval function F : In → I is said to be an interval extension
of the real-valued function f : Rn → R if f(x) ∈ F (X) whenever
x ∈ X . An interval function F is said to be inclusion monotonic if
X ⊂ Y implies F (X) ⊂ F (Y).

A result due to Moore ([16], [17]) states that if F is an inclu-
sion monotonic interval extension of f (or more shortly, an inclusion
function), then F (X) contains the range of f(x), for all x ∈X .

Interval methods for solving optimization problems rely on the
above result and the use of deterministic branch and bound tech-
niques to find the optima of f . An initial domain X0 is split into
smaller boxes (branching) evaluated using the inclusion function F
(bounding). The subregions that do not contain a global minimizer
of f are discarded. The basic cut-off test allowing the algorithm to

DRAFT

Algorithm 1 Interval branch and bound (maximization)
1: Q←X0

2: while Q not empty do
3: Extract X with highest priority pX from Q
4: if upperbound(F (X)) < fbest

or width(X) ≤ εx
or width(F (X)) ≤ εf then

5: Go to step 3
6: else
7: Split X in two sub-boxes X1 and X2

8: for i ∈ {1, 2} do
9: ei ← f(midpoint(Xi))

10: if ei > fbest then
11: fbest ← ei
12: Xbest ←Xi

13: end if
14: Insert Xi into Q, with priority ei
15: end for
16: end if
17: end while
18: return (Xbest, fbest)

discard a subregion X consists in comparing the bounds of F (X)
to the best estimator of the optimum found so far. Boxes that are not
discarded are divided again in smaller boxes until the desired pre-
cision for F (X) is reached (or when X becomes too small). Valid
boxes are inserted in a priority queue, which is sorted according to
an estimator of the quality of the box. In this simple Branch-and-
Bound algorithm, the estimator is just the image of the midpoint of
the box. The search stops when the whole domain has been explored
(the priority queue is empty).

Several refinements of this basic algorithm exist: monotonicity test
when the derivatives of f are available3, concavity test, local search
procedures for enhancing the best estimator, etc. These procedures
may (or may not) be efficient, depending on the problem. In order
to keep this article as simple and clear as possible, we opted to use
the basic algorithm described above, discarding all these refinements.
The interval branch and bound algorithm (IBBA) is described in al-
gorithm 1

2.2 Evolutionary algorithm
Evolutionary algorithms, popularized by David Goldberg ([4]) and
Michalewicz [12], are inspired by Darwin’s theory of evolution. A
population of individuals (points of the search space) is selected ac-
cording to its fitness, and recombined using crossover and mutation
operators. The process is repeated until a termination criterion is met,
as described in algorithm 2.

Several refinements have been introduced in this evolution
scheme, (among others elitism, scaling, sharing). The reader may
refer to [3] for a description of genetic algorithms and other evolu-
tionary algorithms also inspired from evolutionary theory.

In this article, we have used a real-coded genetic algorithm, where
the population is made of N real values vectors. The population is
randomly initialized, with uniform probability, within the bounds of
the search space. Before selecting the pool of parents, a sigma trun-
cation [4] scaling is applied to the fitness values, followed by a clus-
terized sharing (step 4). The selection/reproduction itself is made us-

3 This can be done by hand for simple functions. or using automatic differen-
tiation [2] for complex programs.

Algorithm 2 Evolutionary algorithm (EA)
1: Initialize population
2: while termination criterion is not met do
3: Evaluate raw fitness of population elements
4: Apply scaling and sharing operations on raw fitness
5: Create new population according to new fitness criterion
6: Replace some elements by mutation and crossover
7: end while
8: Return best elements of population

ing the stochastic remainder without replacement [4] principle (step
5).

The crossover and mutation operators are then applied with re-
spective probabilities Pc and Pm (Pc + Pm < 1) to the pool of
parents, as follows:

• crossover: two different elements p1 and p2 are randomly drawn
from the parents’ pool and recombined into two children using an
arithmetic crossover. Each child is defined by αp1 + (1 − α)p2
where α is a real value randomly chosen in a given interval. The
process is repeated bN.Pc

2
c times to create bN.Pcc children.

• mutation: bN.Pmc elements are drawn from the pool of parents.
For each drawn vector, a number k of values is randomly selected,
and a Gaussian noise is added to the selected values, thus provid-
ing the mutated vector. Assuming the vectors are of dimension n,
k is randomly chosen so that k ≤ n. This creates bN.Pmc chil-
dren.

At the end of the crossover/mutation process, the parents are replaced
by their respective children and the new generation of N population
elements replaces the previous one. The process is repeated until a
termination criterion – maximum time here – is met.

We could have chosen other evolutionary algorithms such as
Particule Swarm Optimization [10], Differential Evolution [23] or
CMA-ES [6]. These algorithms might (or might not) have been more
efficient than a real-coded EA. However, the goal of this article is not
to find the fastest or most efficient algorithm, but to show how the
two approaches (stochastic and deterministic) cooperate. We there-
fore chose the algorithm we were the most comfortable with.

3 Parallel cooperative algorithm

When hybridizing the genetic and interval branch and bound algo-
rithms, we adopted the following cooperation scheme. The two al-
gorithms run in parallel. Shared memory is used to exchange infor-
mation between the two programs. A third thread is used to perform
some common operations on elements of both threads.

3.1 IBBA thread

The Branch and bound thread is very similar to the Branch and bound
algorithm described in section 2.1. The thread is described in algo-
rithm 3.

The main differences between the IBBA algorithm and IBBA
thread of the cooperative algorithm are outlined below:

• Shared memory is used to retrieve the best evaluation found by
the evolutionary algorithm (step 4). This best evaluation is used to
update the bounding value of the IBBA thread, thus speeding up
the process of cutting intervals.

DRAFT

Algorithm 3 Cooperative algorithm, IBBA thread
1: Q←X0

2: while Q not empty do
3: Synchronization point for UPDATE thread
4: fbestag ← GetFromSharedMem(fbestag)
5: fbest ← max(fbest, fbestag)
6: Extract X with best priority pX from Q
7: if upperbound(F (X)) < fbest

or width(X) ≤ εx
or width(F (X)) ≤ εf then

8: Go to step 6
9: else

10: Split X in two sub-boxes X1 and X2

11: for i ∈ {1, 2} do
12: ei ← f(midpoint(Xi))
13: if ei > fbest then
14: fbest ← ei
15: bestbb← midpoint(Xi)
16: Xbestbb ←Xi

17: PutToSharedMem(bestbb)
18: end if
19: Insert Xi into Q, with priority ei
20: end for
21: end if
22: end while
23: Signal EA thread and stop

• When the IBBA thread finds a better overall element, it updates
the shared memory, and makes this element available for the EA
thread (step 17).

• When the IBBA thread ends, we are sure that we have found a
global optimum and the IBBA thread sends a signal to the EA
thread and then terminates (step 23).

Other operations are performed on the priority queue of the IBBA
thread by the UPDATE thread at the synchronization point. They are
described in section 3.3.

3.2 EA thread
The evolutionary algorithm thread is also very similar to the evolu-
tionary algorithm described in section 2.2. This thread is described
in algorithm 4.

Algorithm 4 Cooperative algorithm, EA thread
1: Initialize population
2: while (termination criterion not met) or (no signal from IBBA

thread) do
3: Synchronization point for UPDATE thread
4: Evaluate raw fitness of population elements
5: PutToSharedMem(fbestag)
6: bestbb← GetFromSharedMem(bestbb)
7: Replace worst population element by bestbb
8: Evaluate bestbb raw fitness
9: Apply scaling and sharing operations on raw fitness

10: Create new population according to new fitness criterion
11: Replace some elements by mutation and crossover
12: end while
13: Return best element of population

The main differences are outlined below:

• The EA thread puts in shared memory the best evaluation found
so far (step 5), which will be retrieved by the IBBA thread.

• The EA thread gets from the shared memory the best element
found so far by the IBBA thread (step 6) and then replaces its
worst population element by this element.

Other operations are performed by the UPDATE thread on the EA
population at the synchronization point (step 3). These operations are
described in section 3.3.

3.3 UPDATE thread
The UPDATE thread is triggered every t seconds. It is described in
algorithm 5.

Algorithm 5 Cooperative algorithm, UPDATE thread
1: loop
2: Sleep for duration t
3: Wait for and then Suspend EA thread and IBBA thread
4: for i = 1 to N do
5: dmin ← +∞
6: NQ← Q
7: while NQ not empty and dmin 6= 0 do
8: Extract (X, pX) from NQ
9: if upperbound(F (X)) < fbest then

10: Suppress X from Q
11: else
12: if elt(i) ∈X then
13: dmin ← 0
14: else
15: if distance(elt(i),X) < dmin then
16: dmin ← distance(elt(i),X)
17: Xc ←X
18: end if
19: end if
20: end if
21: end while
22: if dmin = 0 then
23: if pX < f(elt(i)) then
24: Reinsert X with new priority f(elt(i)) in Q
25: end if
26: else
27: elt(i)← Project(elt(i), Xc)
28: end if
29: end for
30: Resume EA thread and IBBA thread
31: end loop

The thread first waits for the IBBA and the EA thread to reach
their synchronization point, and suspends them before performing
any operation.

The thread then examines in turn theN elements of the population
of the EA thread. For each element elt(i), it performs a lookup in the
priority queue Q of the IBBA thread. This queue contains all the
interval vectors (boxes) of search space that are still valid. For each
element elt(i), the thread finds the minimal distance dmin of this
element to the closest box Xc in queue Q (in the process the thread
also suppresses from Q boxes whose upper-bounds are lower than
the current best evaluation in step 10). Then:

• if dmin is equal to zero, then we have found a box X that contains
elt(i) and elt(i) is in an admissible zone of search space. Thus

DRAFT

elt(i) is kept inside the EA population. If f(elt(i)) is better than
the current priority pX of box X that contains elt(i) then we
have found a better estimator for the maximum in box X , and the
priority of box X in queue Q is updated to f(elt(i)).

• if dmin is not zero then elt(i) is outside the admissible search
space. Then we project elt(i) on the closest box Xc and replace
in the EA population elt(i) by this projection.

The projection algorithm is simple and described in algorithm 6.

Algorithm 6 Projection algorithm (step 27 of algorithm 5))
1: for j = 1 to n do
2: if elt(i)(j) 6∈Xc(j) then
3: if upperbound(Xc(j)) < elt(i)(j) then
4: elt(i)(j)← upperbound(Xc(j))
5: else
6: elt(i)(j)← lowerbound(Xc(j))
7: end if
8: end if
9: end for

elt(i) is a real vector in Rn, while Xc is an interval real vector in
I(R)n. For each dimension j we check if elt(i)(j) is inside interval
Xc(j). If elt(i)(j) is not inside the interval then we replace elt(i)(j)
by the closest element of interval Xc(j), which is either the upper
bound or the lower bound of Xc(j).

The UPDATE thread has two main goals:

1. Put all the population elements of the EA thread back into the ad-
missible search space. This will increase the speed of convergence
of the EA, and will also take the EA out of local minima as soon
as these minima have been ruled out by the IBBA thread. In fact,
on some examples developed in section 4 we will see that even
the best element of the EA thread can be suppressed and projected
elsewhere by the UPDATE thread when this element is inside a
local optimum.

2. Re-sort the IBBA priority queue, thus focusing the search in the
IBBA thread on the “interesting” part of the search space, and
increasing the IBBA convergence speed.

The UPDATE thread is a costly one, especially when there are
many boxes in the priority queue Q. Thus, it should not be triggered
too often, but often enough to fulfil its two goals. For simplicity’s
sake, we have only presented here a simple strategy (timer interval)
for triggering this thread. But other, more efficient strategies can be
used to trigger it, based on the size of the priority queue, the evolution
of the population in the EA thread. Moreover, some implementation
tricks can be used to accelerate it. However, again for simplicity’s
sake, we present in the following results the simple, basic algorithm.

3.4 Understanding the algorithm
In this section we are going to graphically present a few examples in
order to understand how the cooperative algorithm works. Statistical
tests and results will be presented in section 4.

We will first consider the Griewank function in dimension 6.
Griewank is a classical example [18], even if not a very good one
regarding global optimization, as Locatelli has shown in [11] that
the function becomes easier to optimize for large dimensions with
stochastic algorithms. Moreover the Griewank function is partially
separable, which makes convergence of both EA and IBBA algo-
rithms extremely fast.

It is now customary to use a variant of the Griewank function, the
rotated Griewank function [22].

f(x) =

D∑
i=1

zi
4000

−
D∏
i=1

cos(
zi√
i
) + 1 with z =M(x− o)

whereM is a random rotation matrix and o a random vector. To have
results easy to read we maximize here the function g(x) = 1

1+f(x)

The rotated Griewank function is not separable . The non-
separability of the variables turns the inclusion function of the IBBA,
which is very efficient for the regular Griewank function, into a very
inefficient one. It is currently impossible to find the optimum of the
R-Griewank function with a simple IBBA algorithm as soon as D is
larger than 7. Thus 6 is a good value to see how the cooperative algo-
rithm works, and to compare the convergence of all three algorithms.

On Figure 1, we first compare the cooperative algorithm with the
standard Evolutionary Algorithm and with the Branch and Bound
algorithm4. These results are only an indication of the general be-

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 50 100 150 200 250 300

AG+BB
AG
BB

Figure 1. Comparison Cooperative/AG/BB (6 variable Griewank)

haviour of the cooperative algorithm, and statistical results will be
presented in the next section. It is already clear however that the co-
operative algorithm is much faster than both the EA and the IBBA
algorithms, while proving the result, as the IBBA does.

On Figure 2, we see how the cooperative algorithm finds and
proves the optimum in 25s. The red line is the value of the internal

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25

AG
BB

AG->BB
BB->AG

Out of box

Figure 2. Understanding cooperative (6 variable Griewank)

4 In all figures, AG+BB=cooperative algorithm, AG=evolutionary algorithm,
BB=branch and bound. The x-axis is in seconds, the y-axis is the fitness.

DRAFT

best evaluation found by the EA thread. The green line is the internal
value of the best evaluation found by the IBBA thread. Deep blue
crosses are the times when the EA thread sends to the IBBA thread
a better evaluation than the one that the IBBA has. The pink crosses
are the times when the IBBA thread sends to the EA thread a better
element than the one the EA thread has. The light blue crosses are
the times when the UPDATE thread destroys the best element of the
EA thread because it is outside the searchable domain (the EA thread
is stuck in a local optimum). We can see on this figure that the algo-
rithms collaborate in an extremely efficient way. All mechanisms are
used during the run.

With 8 variable, the IBBA algorithm can never find a solution in
a reasonable amount of time, while the cooperative algorithm can.
The EA algorithm performance on the 8 variable function depends
on luck as it can sometimes get stuck in a local optimum (the coop-
erative algorithm never does).

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 20 40 60 80 100

AG
BB

AG->BB
BB->AG

Out of box

Figure 3. Understanding cooperative (8 variable Griewank)

On Figure 3, we have a detail of the convergence of the cooperative
algorithm on the 8 variable rotated Griewank. We choose one of the
example with the longest running time, in order to clearly see what
happens here. The EA algorithm is usually dragging up the IBBA
(deep blue crosses), at least at the beginning of the search. However,
from 40s and up to 45s, it is the IBBA which is taking the EA al-
gorithm out of local minima. After 45s, the algorithm is already in
the vicinity of the optimum. The IBBA is more efficient than the EA
in performing a local optimization (all the pink crosses at the top of
the graphic). The light blue crosses at the top are simply the result
of the IBBA thread “killing” search space at a very fast pace. The
global optimum is found with the required precision at the last pink
cross (85s). Thereafter, the algorithm is just completing the proof by
searching and cutting the remaining search space (the last clear blue
crosses).

As a last example we will discuss the Michalewicz function [18]:

f(x) =

D∑
i=1

sin(xi)

(
sin(

ix2i
π

)

)20

This function is difficult to optimize because of the steepness of the
curve (the 20-th power), and is interesting because there are very few
results available for large D. In [18], the highest D for which the
optimum is presented is D = 10, and the same goes for [15] and [8].
Of course, the optimum is never proved as it is found by stochastic
algorithms. It was thus a challenge to find and prove the optimum
of the Michalewicz function for D = 12 variables. The function
optimized is g(x) = f(x) +D, in order to keep g positive.

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 0 1000 2000 3000 4000 5000 6000 7000

AG
BB

AG->BB
BB->AG

Figure 4. Understanding cooperative (12 variable Michalewicz)

On Figure 4 we see how the cooperative algorithm behaves. The
cooperation is present all the way up to the optimum. On Figure 5,
we have displayed the times when the IBBA thread had to kill the
best element of the EA thread which was stuck in a local optimum.
This happens often because the function has a lot of local optima and
because the vicinity of the optimum is extremely small due to the
steepness of the function.

 20

 20.5

 21

 21.5

 22

 22.5

 23

 23.5

 24

 0 1000 2000 3000 4000 5000 6000 7000

AG
BB

AG->BB
BB->AG

Out of Box

Figure 5. Killing local minima (12 variable Michalewicz)

The optimum is
x = [2.202881, 1.570808, 1.284998, 1.923050, 1.720462, 1.570800,
1.454402, 1.756096, 1.655724, 1.570792, 1.497731, 1.696620]
g(x) = 23.64957, f(x) = 11.64957 with εx = 10−3 and
εf = 10−4.

4 Statistical tests and results

In Table 1, statistical results on the rotated Griewank function are
presented on 100 runs using the EA alone, the IBBA alone, and the
cooperative algorithm. The search space is [−400, 600]n with n ∈
{6, 7, 8, 9, 10}. The time was limited to 1800 seconds. We used a
3.40GHz Intel Xeon E3-1270.

The Evolutionnary Algorithm (described in part 2.2) parameters
are: 1000 chromosomes, Pc = 0.5 and Pm = 0.3. An arithmetic
crossover is used with α ∈ [−0.5, 1.5]. The mutation operator adds
a random noise in the [−0.5, 0.5] interval to each variable of the
function. We set σ = 2 for sigma truncation scaling and used the
clusterized sharing described by Yin and Germay [24]. The algorithm

DRAFT

stops when the distance between the current best element and the
optimum (1 in this case) is less than 10−4, or when the alloted time
(1800s) is over.

For the Interval Branch and Bound Algorithm, εx and εf (see al-
gorithm 1) were set to 10−2 and 10−4. The algorithm stops when the
Q list is empty, or when the alloted time is over.

The same parameters and stopping criteria are used for the coop-
erative algorithm.

size 6 7 8 9 10
EA Found 100 94 92 83 15

Mean 204 864 972 1340 1678
Sigma 92 356 389 430 34

IBBA Found 71 0 0 0 0
Mean 284

Sigma 192
Cooperative Found 100 100 100 100 100

Mean 50 62 156 215 267
Sigma 18 47 85 317 105

Table 1. Rotated Griewank function, statistical results on 100 runs

For each algorithm, Table 1 gives the number of runs that found
the optimum in less than 1800 seconds, the mean time duration, and
the corresponding standard deviation in seconds.

Results show that the IBBA can only deal with small dimensions
(≤ 6) in a reasonable time. The EA approach is sensitive to dimen-
sion as well. The EA would certainly give much better results if its
parameters and operators were optimized for the Griewank function
but we did not concentrate on this issue. The Cooperative Algorithm
always gives much better results than the IBBA and EA.

5 Conclusion

In this article, we have presented a cooperative algorithm that com-
bines the advantages of the global stochastic optimization techniques
and the global deterministic techniques, and we have shown that this
algorithm is able to speed up the convergence of the stochastic al-
gorithm. But the most important result is that this algorithm is able
to prove the optimality of the result for very difficult functions such
as R-Griewank or Michalewicz, up to 12 variables, while the best
available result was, as far as we know, currently limited to 6 to 8
variables.

We have also focused on presenting the algorithm as clearly as
possible, using only a standard evolutionary algorithm and a standard
interval branch and bound algorithm, leaving out all the acceleration,
modifications and implementation tricks. The results presented are
thus easily reproducible with off-the-shelf algorithms. For simplic-
ity’s sake and lack of space, we have also limited our presentation to
two functions but we have run similar tests on many more functions
(Rastrigin, Schwefel, etc. . .) with similar excellent results.

We think that this cooperative algorithm is currently the best algo-
rithm available for proving the optimality of the result for complex
and deceptive functions up to a number of variables which had, to
our knowledge, never been reached.

Our next paper will present the modifications of the EA and the
IBBA algorithms, along with the implementation optimizations that
we have developed. These improvements tremendously speed up the
cooperative algorithm and enable, for example, to find and prove the
optimum of the Michalewicz function with 20 variables in less than
30 seconds on a “standard” dual core processor.

References
[1] Jarmo T. Alander, ‘An indexed bibliography of genetic algorithms:

Years 1957-1993’, Technical report, Department of Information Tech-
nology and Production Economics, (1994).

[2] H.M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris,
Automatic Differentiation: Applications, Theory, and Implementations,
Springer-Verlag, 2006. ISBN: 978-3-540-28403-1.

[3] A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing,
Springer, 2003. ISBN : 3-540-40184-9.

[4] D. Goldberg, Genetic Algorithms, Addison Wesley, 1989. ISBN: 0-
201-15767-5.

[5] E. Hansen, Global optimization using interval analysis, Dekker, New-
York, 1992.

[6] N. Hansen and S. Kern, ‘Evaluating the cma evolution strategy on mul-
timodal test functions’, in Proceedings of the 8th International Confer-
ence on Parallel Problem Solving from Nature, pp. 282–291, (2004).

[7] J.H Holland, Adaptation in Natural and Artificial Systems, University
of Michigan press, 1975.

[8] Lhassane Idoumghar, Mohamed Melkemi, and René Schott, ‘A novel
hybrid evolutionary algorithm for multi-modal function optimization
and engineering applications’, in Proceedings of the 13th IASTED In-
ternational Conference on Artificial Intelligence and Soft Computing,
(2009).

[9] L. Jourdan, M. Basseur, and E-G Talbi, ‘Hybridizing exact methods
and metaheuristics: A taxonomy’, European Journal of Operational
Research, (2009).

[10] J. Kennedy and R. Eberhart, ‘Particle swarm optimization’, in Proceed-
ings of the IEEE International Conference on Neural Networks, (1995).

[11] M. Locatelli, ‘A note on the Griewank test function’, Journal of global
optimization, 25, 169–174, (2003).

[12] Z. Michalewicz, Genetic algorithms+data structures=evolution pro-
grams, Springer-Verlag, 1992. ISBN: 0-387-55387-.

[13] SUN Microsystems, C++ Interval Arithmetic programming manual,
SUN, Palo Alto, California, 2001.

[14] SUN Microsystems, Fortran95 Interval Arithmetic programming man-
ual, SUN, Palo Alto, California, 2001.

[15] M. Molga and C. Smutnicki, ‘Test func-
tions for optimization needs’, Technical report.
http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf.

[16] R.E. Moore, Interval Analysis, Prentice Hall, NJ, 1966.
[17] R.E. Moore and Fritz Bierbaum, Methods and applications of interval

analysis, SIAM, 1979.
[18] Hartmut Pohlheim, Example of objective functions, documentation of

the Matlab Genetic and evolutionary algorithm toolbox, MATLAB,
2005.

[19] Jakob Puchinger and Günther R. Raidl, ‘Combining metaheuristics and
exact algorithms in combinatorial: A survey and classification’, in Pro-
ceedings of the International Work-conference on the Interplay between
Natural and Artificial Computation. IWINAC, (2005).

[20] N. Revol and F. Rouillier, ‘Motivations for an arbitrary precision inter-
val arithmetic and the MPFI library’, Reliable computing, 11(4), 275–
290, (2005).

[21] D.G. Sotiropoulos, E.C. Stravopoulos, and M.N. Vrahatis, ‘A new hy-
brid genetic algorithm for global optimization’, in Proceedings of the
2nd World Congress of Nonlinear Analysis, (1997).

[22] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger,
and S. Tiwari, ‘Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization’, KANGAL Re-
port 2005005, (May 2005).

[23] Differential Evolution A Practical Approach to Global Optimization,
Ken Price and Rainer Storn and Jouni Lampinen, Springer-Verlag,
2005. ISBN: 3-540-20950-6.

[24] X. Yin and N. Germay, ‘A fast genetic algorithm with sharing scheme
using cluster analysis methods in multimodal function optimization’, in
Proceedings of the Artificial Neural Nets and Genetic Algorithm Inter-
national Conference, Insbruck Austria. Springer-Verlag, (1993).

[25] Xiaowei Zhang and Sanyang Liu, ‘A new interval-genetic algorithm’,
in Proceedings of the Third International Conference on Natural Com-
putation. ICNC, (2007).

	Background
	Standard algorithms
	Interval branch and bound
	Evolutionary algorithm

	Parallel cooperative algorithm
	IBBA thread
	EA thread
	UPDATE thread
	Understanding the algorithm

	Statistical tests and results
	Conclusion

